Amoeboid protists isolated from ancient Siberian permafrost

Evento de amostragem
Versão mais recente published by Institute of physicochemical and biological problems in soil science of the Russian Academy of Sciences on fev 28, 2020 Institute of physicochemical and biological problems in soil science of the Russian Academy of Sciences

Baixe a última versão do recurso de dados, como um Darwin Core Archive (DwC-A) ou recurso de metadados, como EML ou RTF:

Dados como um arquivo DwC-A download 19 registros em English (13 KB) - Frequência de atualização: irregular
Metadados como um arquivo EML download em English (22 KB)
Metadados como um arquivo RTF download em English (22 KB)

Descrição

Permafrost, frozen ground cemented with ice, occupies about a quarter of the Earth’s hard surface and reaches up to a thousand meters depth. Due to constant negative temperatures, permafrost sediments represent a unique record of past epochs, whenever it comes to accumulated methane, oxygen isotope ratio, or stored mummies of animals. Permafrost is also a unique environment where cryptobiotic stages of different microorganisms are trapped and stored alive for up to hundreds of thousands of years. Several strains isolated from permafrost cores have been already described.

Here described is the collection of strains of clonal amoeboid protists of the Soil Cryology Lab, Pushchino, as well as permafrost samples from which the strains were isolated. The dataset presented contains different core characteristics and the taxonomy of isolated strains. Specimens of the collection are available from the Soil Cryology Lab upon request. The cores are stored frozen at −18 °C and may be used for further detailed studies and isolation attempts.

Registros de Dados

Os dados deste recurso de evento de amostragem foram publicados como um Darwin Core Archive (DwC-A), que é o formato padronizado para compartilhamento de dados de biodiversidade como um conjunto de uma ou mais tabelas de dados. A tabela de dados do núcleo contém 19 registros.

Também existem 2 tabelas de dados de extensão. Um registro de extensão fornece informações adicionais sobre um registro do núcleo. O número de registros em cada tabela de dados de extensão é ilustrado abaixo.

Event (core)
19
Occurrence 
35
ExtendedMeasurementOrFact 
5

This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for download in the downloads section. The versions table lists other versions of the resource that have been made publicly available and allows tracking changes made to the resource over time.

Versões

A tabela abaixo mostra apenas versões de recursos que são publicamente acessíveis.

Como citar

Pesquisadores deveriam citar esta obra da seguinte maneira:

Malavin S, Shmakova L (2020): Amoeboid protists isolated from ancient Siberian permafrost. v1.4. Institute of physicochemical and biological problems in soil science of the Russian Academy of Sciences. Dataset/Samplingevent. http://gbif.ru:8080/ipt/resource?r=ancientpermafrostamoeboidprotists&v=1.4

Direitos

Pesquisadores devem respeitar a seguinte declaração de direitos:

O editor e o detentor dos direitos deste trabalho é Institute of physicochemical and biological problems in soil science of the Russian Academy of Sciences. This work is licensed under a Creative Commons Attribution Non Commercial (CC-BY-NC 4.0) License.

GBIF Registration

Este recurso foi registrado no GBIF e atribuído ao seguinte GBIF UUID: e11d99cb-4a96-4e9d-847e-d078cfd59f6c.  Institute of physicochemical and biological problems in soil science of the Russian Academy of Sciences publica este recurso, e está registrado no GBIF como um publicador de dados aprovado por Participant Node Managers Committee.

Palavras-chave

Samplingevent; permafrost; protists; drilling and coring; carbon-14 analysis; DNA sequencing; microbiology

Contatos

Stas Malavin
  • Provedor Dos Metadados
  • Autor
  • Originador
  • Ponto De Contato
Researcher
Pushchino Scientific Center for Biological Research RAS
Institutskaya 2
142290 Pushchino
Moscow Oblast
RU
+79167091696
Lyubov Shmakova
  • Autor
Senior Researcher
Pushchino Scientific Center for Biological Research RAS
Institutskaya 2
142290 Pushchino
Moscow Oblast
RU
+79851476903
Lyubov Shmakova
  • Autor
Researcher
Pushchino Scientific Center for Biological Research RAS
Institutskaya 2
142290 Pushchino
Moscow Oblast
RU
Elizaveta Rivkina
  • Pesquisador Principal
Laboratory Head
Pushchino Scientific Center for Biological Research RAS
Institutskaya 2
142290 Pushchino
Moscow Oblast
RU

Cobertura Geográfica

Permafrost samples for the strain isolation were obtained in North-Eastern Eurasia, from Yamal Peninsula to Chukotka.

Coordenadas delimitadoras Sul Oeste [65, 65], Norte Leste [75, 180]

Cobertura Temporal

Período de Formação 2000-ongoing

Dados Sobre o Projeto

The project aims at expanding the view on the diversity of protists and their viruses that could be found in ancient (Pliocene to Holocene) Arctic permafrost.

Título Biodiversity and evolution of heterotrophic protists and giant viruses from Holocene and Pleistocene Arctic permafrost
Identificador RFBR-CNRS-a-17-54-150003
Financiamento Russian Foundation for Basic Research (RFBR), grant 17-54-150003
Descrição da Área de Estudo Northern Siberia, from Yamal Peninsula to Chukotka
Descrição do Design Protists and viruses are aseptically isolated from permafrost samples, borehole cores and outcrop samples, taken using specially developed technique (Gilichinskiy, D.A., Khlebnikova, G.M., Zvyagintsev, D.G., Fedorov-Davydov, D.G., Kudryavtseva, N.N., 1989. Microbiology of sedimentary materials in the permafrost zone. International Geology Review 31, 847–858. https://doi.org/10.1080/00206818909465938. Shi, T., Reeves, R.H., Gilichinsky, D.A., Friedmann, E.I., 1997. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecology 33, 169–179. https://doi.org/10.1007/s002489900019). Isolated strains are studied using general microbiological techniques (cloning, axenization, DNA isolation and characterization, microscopy observations, physiological essays, taxonomic identification and description).

O pessoal envolvido no projeto:

Lyubov Shmakova
Elizaveta Rivkina
  • Processador

Métodos de Amostragem

The drilling was performed using a mobile drilling rig (core-drilling machine) UKB-12/25 (V.V. Vorovsky Machine-Building Plant, Moscow, Russia) operated without flushing and blowing. Flushing and blowing were shown to cause contamination of the cores by modern soil microorganisms. Cores were removed each 30—70 cm of the drilling. The core diameters were 115 to 75 mm, depending on the well depth (the deeper the well the smaller). A removed core was enveloped in a one-centimeter-thick coat of half-melted cuttings. This coat was removed with a knife, showing a completely frozen inner part. After a short lithological and glaciological description of the sediments, the core was passed to a clean field lab organized in a tent. Operations in the lab were conducted behind a gas-fired burner using disposable materials and gloves, following general microbiological practice. In the lab, the core was shaved with a sterile scalpel so that an approximately five mm outermost layer was removed. This remaining core was four to six cm in diameter, depending on the initial value. Immediately after shaving, the core was put into a sterile plastic bag and placed in a portable freezer, a cave dug into an ice wedge, or an empty borehole used as a freezer. In total, the “outdoor” stage of the process lasted five to ten minutes, depending on the current well depth. The “indoor” lab stage generally took around five minutes. All collected cores were kept at negative temperatures during the whole period of transportation to the stationary lab. Outcrops are natural exposures of ancient permafrost sediments formed at sea and river banks. The advantage of sampling from the outcrop wall is the possibility of visual inspection and description of the whole sediment layer. Samples from outcrops were taken from the frozen surface of the outcrop wall after the removal of melted material. In the wall, a hole of about 40 cm deep was made with either a hand-held drill, a chisel, or a knife. A cylinder sample of about 5 cm in diameter was carefully carved or drilled out from the bottom of the hole, treated with 95% ethanol, and immediately placed into a sterile plastic bag. As with the cores, all collected outcrop samples were kept frozen during the whole period of transportation. Buried terminal nesting chambers of the ground squirrel (Citellus) burrows are unique paleontological objects of Pleistocene Ice Complex sediments. They usually contain animal supplies made of seeds of surrounding grasses. Usually frozen in the living state, they are very well preserved. From the tissue of a Silene stenophylla seed, a viable flowering plant was grown (Yashina et al. 2012). Chambers also contain a diverse community of protists and fungi. Chambers were cut from the outcrop wall in one or several pieces ten or more cm in each dimension, put immediately in sterile plastic bags, and kept frozen until processing in the lab.

Área de Estudo The samples were collected in the field and stored constantly frozen during all periods of transportation and processing. In the lab, a part of each sample was used to isolate protist strains. The remaining part has never been melted and is stored at −18 °C. The isolation was done in sterile conditions. Obtained samples were cloned and maintained as bacterized or axenic cultures on plastic or agar with liquid overlay.
Controle de Qualidade During the development of the permafrost microbiological sampling technique, several tests for contamination of the core interior have been established at different phases of sampling and storage. Gilichinskiy et al. (2010) and Shi et al. (1997) used Serratia marcescens cultures (Bacteria) producing easy-to-notice red colonies. A drilling barrel was covered with a culture suspension 2 h prior to drilling. In a parallel experiment, frozen samples were seeded with the same suspension already in the lab and left intact at negative temperature for several hours to several months. In both experiments, the distribution of S. marcescens cells in a core has been investigated during the sample processing. In all tests, bacteria have been found exclusively in the outer layer and never inside the core. Later, Juck et al. (2005) used fluorescent latex beads (microspheres) 0.5 μm in diameter and a transformed Pseudomonas strain expressing the green fluorescent protein (GFP). Both beads and transformed bacteria were applied to the drilling equipment before drilling, similar way as described above for S. marcescens suspension. Fluorescence microscopy showed that neither beads nor bacteria penetrate into a sample to a depth exceeding one cm from the surface. Additionally, PCR revealed no amplification of the GFP gene from the inner part of the cores. Based on the negative results obtained for bacteria and fluorescent beads, i.e. particles around two μm in diameter or less, we consider it proven that resting protist cysts, which are at least five times bigger, can’t move inside the frozen ground and thus could not penetrate the sediments considerably later than they were deposited. Same way, the contamination of the inner part of the samples during sampling and laboratory processing is not possible either.

Descrição dos passos do método:

  1. Field sampling (see above)
  2. Isolation of protists in the lab For the isolation of protists, 1—5 grams of the sediment from the inner part of the frozen sample were placed in 90 mm Petri dishes filled with autoclaved mineral Prescott and James (PJ) medium (Prescott and James 1955). Negative controls (same procedures without sample inoculation) were performed simultaneously. The isolation was performed in a laminar flow hood using disposal or sterilized equipment. After 7—10 days of incubation, samples were examined using a Nikon TMF100 inverted microscope. Detected cells were transferred to the fresh medium by a glass capillary. Strains were cloned and further cultured in 60 mm Petri dishes using 0.01% Cerophyl infusion made on PJ medium (Smirnov and Brown 2004).

Dados de Coleção

Nome da Coleção Коллекция образцов вечной мерзлоты лаборатории криологии почв ИФХиБПП РАН
Identificador da Coleção SCL
Nome da Coleção Коллекция амебоидных протистов лаборатории криологии почв ИФХиБПП РАН
Identificador da Coleção SCL-Prot
Métodos de preservação do espécime Sem tratamento,  Preparação microscópica,  Congelado

Citações bibliográficas

  1. Malavin, S., Shmakova, L., 2020. Isolates from ancient permafrost help to elucidate species boundaries in Acanthamoeba castellanii complex (Amoebozoa: Discosea). European Journal of Protistology 73, 125671. https://doi.org/10.1016/j.ejop.2020.125671
  2. Shatilovich, A.V., Shmakova, L.A., Mylnikov, A.P., Gilichinsky, D.A., 2009. Ancient Protozoa isolated from permafrost, in: Margesin, R. (Ed.), Permafrost Soils. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 97–115. https://doi.org/10.1007/978-3-540-69371-0_8
  3. Shmakova, L., Bondarenko, N., Smirnov, A., 2016. Viable species of Flamella (Amoebozoa: Variosea) isolated from ancient Arctic permafrost sediments. Protist 167, 13–30. https://doi.org/10.1016/j.protis.2015.11.001
  4. Shmakova, L.A., Karpov, S.A., Malavin, S.A., Smirnov, A.V., 2018. Morphology, biology and phylogeny of Phalansterium arcticum sp. n. (Amoebozoa, Variosea), isolated from ancient Arctic permafrost. European Journal of Protistology 63, 117–129. https://doi.org/10.1016/j.ejop.2018.02.002
  5. Shmakova, L.A., Rivkina, E.M., 2015. Viable eukaryotes of the phylum Amoebozoa from the Arctic permafrost. Paleontological Journal 49, 572–577. https://doi.org/10.1134/S003103011506012X
  6. Демидов, Н.Э., Баранская, А.В., Дурденко, Е.В., Занина, О.Г., Караевская, Е.С., Пушина, З.В., Ривкина, Е.М., Спирина, Е., Спенсер, Р., 2016. Биогеохимия мерзлых толщ арктического побережья полуострова Гыдан. Проблемы Арктики и Антарктики 3, 34–49.

Metadados Adicionais

Empty cells represent "no data" N/A: "not applicable"

Identificadores alternativos e11d99cb-4a96-4e9d-847e-d078cfd59f6c
http://gbif.ru:8080/ipt/resource?r=ancientpermafrostamoeboidprotists